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The glory of Moore’s law

The experts ook ahead

Cramming more components
onto integrated circuits

With unit cost falling as the number of components per
circuil riaen. by 1975 economics may dilats RGUoBEIngG 88
many as 65,000 componeni on a single silicon chip

By Gordon & Moore . Intel 4004 Intel Core i7 980X
e e 2300 transistors 1.17B transistors
e s e b AR R 740 kHz clock 3.33 GHz clock
et P e et : 10um process 32nm process
10.8 usec/inst 73.4 psec/inst

Every 2 Years |
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* Double the number of transistors
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* Build higher performance general-purpose processors
~ Make the transistors available to masses

SEEEES e ~ Increase performance (1.8x1)
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~ Lower the cost of computing (1.8x)
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But, somebody needs to make those transistors available to the rest of the community.
All of this sounds nice and dandy, but what is the catch?
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Semiconductor trends

ITRS roadmap for SoC Design Complexity Trens
ITRS: International Technology Roadmap for Semiconductors
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Expected number of processing elements into a System-on-Chip (SoC).
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International Technology Roadmap for Semiconductors


Semiconductor trends

ITRS roadmap for SoC Design Complexity Trens
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Semiconductor trends

Network-on-Chip (NoC) -based Multi/Many-core Systems
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Dark Silicon Era , , ,
The catch is powering exponentially

increasing number of transistors
without melting the chip down.
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Then talk about shift to multicore
The catch is powering exponentially increasing number of transistors without melting the chip down.
As this graph shows even thought we have been doubling the number of transistors every year, but we have been increasing the chip power consumption much slower and actually we have already hit the chip power budget limits.
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Dark Silicon Era , , ,
The catch is powering exponentially

increasing number of transistors
without melting the chip down.
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Then talk about shift to multicore
The catch is powering exponentially increasing number of transistors without melting the chip down.
As this graph shows even thought we have been doubling the number of transistors every year, but we have been increasing the chip power consumption much slower and actually we have already hit the chip power budget limits.
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The general consensus was that with exploiting parallelism in the applications and increasing the number of cores we can overcome the transistor scaling trends!
We will be able to continue scaling many more generations!

There was diminishing return but if the power but we didn’t have the power to spend 

We have shown how:
With a small cores but many of them you can exploit task level parallelism!
There is enormous value in improving the performance of single cores and in performance of multicore
Our community has largely moved to multicore a larger fration of the community outgh to be investigating other paths

Right now an enormous fraction of the researh community is invested in multicore research



Even multicores could not help!
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End to Moore’s law?

High Volume 2008 2010 2012 2014
Manufacturing

Technology Node 45 32 22 16
(hm)

Integration Capacity 8 16 252) 64
(BT)

Source: Shekhar Borkar, Intel Corporation

Era of multicore

I

Era of integration

Era of discovery

Era of X

Era of invention Era of ILP

Multicores are likely to be a stopgap
> Not likely to continue the historical trends
» Do not overcome the transistor scaling trends
» The performance gap is significantly large
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Talk about economics
Digital tax – need to take noisy, small number of atoms and electrons, and build reliable and stable Boolean logic

Not the end of progress, just the end of consistent, predicable exponential growths in transistor counts
During this time DRAM will die, but non-volatile memory densities will continue to make great progress, as well as communications.
Expect to see different technologies with different characteristics integrated into dies.



End to Moore’s law?

High Volume 2008 2010 2012 2014
Manufacturing

Technology Node 45 32 22 16
(hm)

Integration Capacity 8 16 252) 64
(BT)

Source: Shekhar Borkar, Intel Corporation
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Era of discovery Era of integration Era of multicore

Era of invention Era of ILP Era of X
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« HW/SW specialization and heterogeneity
e Approximate computing
 New emerging technologies (under development)
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Talk about economics
Digital tax – need to take noisy, small number of atoms and electrons, and build reliable and stable Boolean logic

Not the end of progress, just the end of consistent, predicable exponential growths in transistor counts
During this time DRAM will die, but non-volatile memory densities will continue to make great progress, as well as communications.
Expect to see different technologies with different characteristics integrated into dies.



Where we are now and what’s the trend?

ITRS roadmap for SoC Portable Design Complexity Trens

ITRS: International Technology Roadmap for Semiconductors
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SoC Architecture Template.
The SOC embodies a highly parallel architecture
consisting of
¢ Main processors (grow slowly)

 PEs (Processing Engines) (grow faster) This architecture template enables both high

* customized processor
» Accelerators (function).
Peripherals

) 4

processing performance and low power
consumption by virtue of parallel processing

and hardware realization of specific functions.

Memories (proportional to #PEs)
Die size of 49mm? gradually decreases to 44mm?



Example: A

OMAP (Open Multimedia Applications Platform) e
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The previous graph is useful for understanding the disparity of efficiency on existing chips.
But let’s understand the space of possibilities and the rough magnitudes of opportunity.
Go through animation
Code specialization is well underway, with great work at Berkeley and many other places tackling the parallelization challenge.
GPUs are specialized logic for SIMD-izable workloads which require code specialization as well

First let’s look at how we might make logic specialization more general



Paradigm Shift from
Homogeneity to Heterogeneity

Heterogenous (Zynq/HSA-like) HW/SW SoC platform
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Heterogeneous Computing

3 f 2
Transforming von Neumann to heterogenei — T | o)
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Find critical part of Compile the program Execute on a fast specialized

program component & specilized SW/HW processing engine (PE)




Approximate computing

* Relax the abstraction of near-perfect accuracy in general-purpose computing
e Allow errors to happen in the computation

> Run faster
> Power efficient

» This sounds a bit crazy but a large body of important applications having some
amount of errors in the computation, entirely acceptable!

Computer vision, multimedia, stream applications
Large-scale machine learning

Bioinformatics

Mining big data

Speech and Al

VVVVY




Approximate computing (cont.)

Embracing error:




Approximate computing (cont.)

Embracing error:




Approximate computing (cont.)

Transforming von Neumann to Neural Networks

Speed: ~4xT,
Energy: ~10x/,
Quality: 5%)])

[Esmaeilzadeh, and Burger, MICRO 2012]

¥

3
B Progiam B lb.

Find an approximate =~ Compile the program Execute on a fast Neural
program component & traina NN Processing Engine(NPE)




Approximate computing (cont.)

Zynq/HSA-like HW/SW SoC platform

Input layer

Hidden layer

Neuromorphic Application

Qutput layer

AXI Interconnect
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Why Deep Learning (Neuromorphic)?

[log] von-Neumann
T Machines
Machine ,
Complexity - Neuromorphic
e.g. Gates; : Machines
Memory; | :
Neurons; —— % # of papers
Synapses; // _ Human level I
Power; ]| i Prugralm performance . l I
sie L\ e . e Ll
] : Dawn of a new
: paradigm
H T T T >
“simple” | “complex” [log] o

Power Consumption, J/spike
=

Environmental Complexity

Neuromorphic computing scales well

increasing complexity of problems.

Digital ComputerA

Silicon Neuron

’

Biological Neuron
10° 10° 10° 10°
Size, um‘?

# of citations

Intel: Nervana and Movidius

Google: Tensor

Nvidia: Jetson TX1 and TX2 specialized for DNN

Microsoft: BrainWave

Qualcomm: Zeroth Processors, extending with NVM

IBM: TrueNorth

Biological and silicon neurons have much better power and Auviz/Xilinx: CNN accelarator

space efficiencies than digital computers [MIT & Intel]



Computing Platform

Potential applications:
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Autonomous vehicles & Technology Used

e Vision Camera:

— Cameras are the only sensor technology that can capture texture, color and contrast
information and the high level of detail captured by cameras allow them to be the
leading technology for classification.

*  make camera sensors indispensable for autonomous systems.

— The camera sensor technology play a very large role in autonomous vehicle.

Camera will becomes
domnant
U.S. collision avoidance sensors market, .
by technology, 2014 - 2025 (USD Million) . i

Parking Assist
Cross-Traffic Alert
dJunction Assist

- 2  — = ~
P sist s
- Cross Alert y —— 1
T4 7 m = EJ @
- - Mrrcr epl \ cement =
I / Forward Camera
. . . . . l I I P Presence detection F
Gesture recognition

In-Cabin Single & Slereo
2014 215 2@ 27 21§ 2018 2020 2021 2022 2023 2024 2025 z.aa: cFom

Driver Monitoring

IR & 3D Camera
Sign Rec

mRadar =Camera mUltrasound = LiDAR Some examples of camera in the Advanced driver-
assistance systems (ADAS) application:
» Adaptive Cruise Control (ACC)
* Automatic High Beam Control (AHBC)
 Traffic Sign Recognition (TSR)
* Lane Keep Systems (LKS)



Heterogeneous Era  overall data creation

Heterogenous embedded platform

50 30%

45 *'Real-time data will grow at 1.5 times the rate of
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% of Total Global Datasphere . Real-Time Data

*  We need high-performance embedded computing machines to deal with huge amount
of heterogeneous sensor inputs while executing multiple algorithms for autonomy!

 Examples:

Perception: * (parallel) Heterogenenous Computing W H AT
3-D imaging with multiple lasers (LIDAR). /5_
Edge-Detection Algorithm « Deep Learning = m d,@« -
Motion-Detection algorithm —_—
Tracking algorithm 1H(a
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N 0420 ]
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Heterogeneous Era (cont.)

- HW&SW Integration
- Based on legacy code
- Map the legacy code to heterogeneous architgectures

Code generation Find a critical Compile the program
from modeling program component & generate HW logics

Execute on the HW logic




Heterogeneous Era (cont.)

- HW&SW Integration
- Based on legacy code
- Generting and optimizing deep neural nerwork

Code generation Find a critical Compile the program Execute on the smart and
from modeling program component  , generate & traina NN faster logic
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Heterogeneous Era (cont.) iwoK ﬁﬁ
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DeepMaker: Deep Learning Accelerator on Commercial Programmable Devices
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DeepMaker

e Mohammad will continue with some of the latest
results

 How we generate optimal models for deep networks

» Some results for image processing with industrial
dataset
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DeepMaker Framework
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Agenda

Convolutional Neural Networks (CNNSs)
Processing Challenges of CNNs
DeepMaker Framework
Classification/Implementation Results
Conclusion

References



o CNN is composed of multiple layers running in sequence, where input data is
fed to the first layer and output is a series of feature extraction kernels
applied on the input image.

o Convolution, normalization, pooling, and activation layers are responsible
for feature extraction, while fully-connected layers are for classification.
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nonlinearity J &
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convolution + pooling layers fully connected layers  Mx binary classification
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Processing Challenges

1. Dealing with big amount of raw data for modern applications
e Modern Vision Camera: 10 Megapixel, 40 frame/sec.

e By 2025, real-time data (generated by 10T) will constitute nearly 30% of all
data created.

. Data created 60 35%
% of Global
Datasphere

- Real-Time Data o | e

Annual Size of the Global Datasphere [1] Data Creation by Type [1]




Processing Challenges In
Big Data Era (cont.)

2. Traditional CMOS scaling no longer provides performance and efficiency gains
due to the failure of Dennard scaling and Moore’s law [3].

2013
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3. Increasing the complexity of DL algorithms for achieving better accuracy [4].
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So we need a huge amount of processing ptontial to deal with bit data and increasing complexity of algorithms.



DeepMaker [4]

We aim to tackle these challenges by providing a framework which generates
synthesizable accelerators for CNNs

Front-end: IS responsible for Designing an accurate and optimized
CNN architecture

e The network generalization proficiency, network complexity, and execution
time are depending on network architecture.

Back-end: Efficient Implementation of generated CNN on different COTS
processing platforms
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Designing a Optimal CNN
Architecture

Using a metaheuristic evolutionary solution for efficiently exploring the
design space of CNN architectures

Leveraging a multi-objective exploration strategy

« Validation Accuracy f

* Network Architectural Complexity: 'I' otal number of trainable parameters
Output: a set of Pareto frontiers including improved architectures

2,000,000 | ; - i | ;
- o Gen. 1
Convolutional Neural Network on CIFAR-10 I || Gen. 5 ]

1500,000( ||

L o (o] o]
1,000,000 ,@

500,000

Parameters

Net-CNN-Arch.1

:

\ _
Net-CNN-Arch2 \}N o % 4 .

0 8>S ..
01 02 03 04 05 06 07 08 O0¢
Net-CNN-Arch.3 /
Error (with 16 epochs)
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The ﬁxed length genome type is pictured in Fig. 4.(a) with three columns and two rows, where the number of processing nodes could be different from genome length. In this representation, we have two different nodes, active and inactive, where active node should be in the chain, from input to the output.

In this representation, we have two different nodes, active and inactive, where active node should be in the chain, from input to the output



Parameter Deep CNN : Genome Type: ¥ Condense | #Conv.  Activation o . Kernel |
Activation Function hard-sigmoid, relu, elu, | Layer | Layer | Functon Size |
tanh, sigmoid, softplus, linear | Step 1: Crossover Step 2: Mutation |

# Condense_Layer 1,2,3,4 I _ | Random Crassover Polnt ' ) :
# Convolution_Layer 16, 28, 40, 52 | 12 ‘ 3 ‘e.u‘ adamax ‘3,@ j velu| nag |
Kernel Size 3%3, 5%5 ' Random crgsaverpoic |
Optimizer rmsprop, adam, sgd, I o
adagrad, adadelta, adamax, nadam I |

* Pruning the design space by taking inspirations from DenseNet arch.
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The template architecture of generated networks
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We used one point crossover and mutation on one single parameter
Table shows the range of each parameter


»>Results

Training Datasets

e MNIST: This is a dataset of black and white images for handwritten digit recognition

e CIFAR-10: This is a complex colorful benchmark dataset of natural images used for
object recognition

Getting the total execution time as the evaluation metric since
communication time is vital for embedded implementations

We also did not use any network compression technigue to only assess the
influence of network architecture on inference time.

Initial Configuration:
e Epoch=30, batch size=128, number of generations=5, initial population=2.
Back-end side:

- Platform CPU GPU ARM FPGA
CPU Core 17-7820 Frequency (GHz) 2.9 1.178 1.9 3
Technology (nm) 14 28 28 16 (FInFET+)
GPU Tesla M60 IDP (W) 45 300 5 -
FF= 2.5(x10%)
ARM Cortex-A1l5 Cores/Total Thread 4/8 4096 8/8 LUT= 1.18(x10%)
CUDA Cores DSP= 6800
FPGA Xilinx UltraScale+ Memory 8MB Cache | 16GB GDDR5 | 2.5MB Cache | BRAM= 75.5Mb

Approx. Price (USD) 378% 7.532% 60$/board




Classification Results

MNIST (Compare to MetaQNN by Google): 43x compression rate, 0.06% accuracy loss

CIFAR-10 (Compare to the most accurate): 26.4x compression Rate, 4% accuracy loss
CIFAR-10 (Compare to MetaQNN by Google): 6.92x compression Rate, 4.2% better

accuracy
Dataset Method #Params (XIOG) Error (%)
1000le MetaONN [21] 5.59 35
EDEN [28] 1.8 1.6
SimpleNet [29] 3 25
MNIST Wan et al. [30] ; 21
Our MNIST-MLP .19 1.2
Our MNIST-CNN .13 A1
NAS-v1/v3 [22] 4.2/37.4 5.50/3.65
SimpleNet [29] 548 4.68
VGG-16 [31] 138 7.55
DenseNet (k=12)-40 [6] 1.0 7.0
DenseNet (k=12)-100 [6] 7 5.77
DenseNet (k=24)-100 [6] 27.2 5.83
EDEN [28] 17 25.6
Most Pobular ResNet-20 [27] 0.27 8.75 : . o 1
p ResNet-110 [27] 17 6.43 .7x compression rate, 0.5% accuracy loss
CIFAR-10 Masanori et al. [24] 1.68 5.98
Block-QNN-ZZL [23] 39.8 3.54
Google (RL) gl;;la 31\? %g 65942 : ;ig 5.4Xx compression rate, 1.5% accuracy loss

Gastaldi et al. [26] 264 2.86
Our Net-MLP 0.66 37.0
Our Net-CNN-Arch.1 1.0 6.9

Our Net-CNN-Arch.2 0.49 8.7 10
Our Net-CNN-Arch.3 0.14 14.1




» All the results have been compared with DenseNet (7 M params) as the most
accurate network

o FPGA execution time

Generated | Speedup
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Net-CNN-
Arch.3

5.2X

10X

39.63x

Accuracy
Loss (%)

1.13

2.03

8.33

100

=
(=]

FPGA Speedup, # params

-

0.1

39.63
RZZ3

k&

Net-CNN-3

Implementation Results

227 Speedup -¥- # Params ==@=Accuracy

KA

paeses | > x\»
Net-CNN-2__- N’etmq
- ~

-

[xxd

2ot

ResNet 20 ,“ResNet-110
4

DenseNet  DenseNet
(k=12)-100 (k=24)-100
K

04

11

96

92

920

86

82

80

Accuracy 4(%)



o GPU
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o ARM Processor
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Presentation Notes
We select DenseNet (K=12)-100  as the baseline for comparisons since this architecture has strikes a balance between accuracy and the number of parameters
Unlike accuracy and the number of parameters, execution time is a platform aware metric and highly depends on hardware implementation, compiler, and the software stack. Therefore, there is no exact speedup similarity among different hardware platforms


Results

o All the results have been achieved by running on NVIDIA GTX 1080ti.

o 4X better inference time (total execution time)
e 4.22X more energy efficiency

o 4.15 % more accurate results

Solution Facebook, DeepMaker
2018 [2]

AVG. Accuracy 86.95 % 91.1%
Inference Time (Ms) 63 16
Frame/Second 15 62
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Conclusion

Deep convolutional neural networks are complex processing models
which their implementation is challenging especially on embedded
devices

To tackle these challenges, we proposed a multi-objective
evolutionary approach which automatically design a highly
optimized CNN arc. for COTS processing platforms.

The evaluation results demonstrate the effectiveness of DeepMaker
on complex image datasets
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