
AI acceleration – image processing as a use case

Masoud Daneshtalab
Associate Professor at MDH
www.idt.mdh.se/~md/



Outline

• Dark Silicon
• Heterogeneouse Computing
• Approximation

– Deep Neural Networks 
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The glory of Moore’s law

Intel 4004
2300 transistors
740 kHz clock
10um process
10.8 usec/inst

Intel Core i7 980X
1.17B transistors
3.33 GHz clock
32nm process
73.4 psec/inst

• Double the number of transistors
• Build higher performance general-purpose processors
⁻ Make the transistors available to masses
⁻ Increase performance (1.8×↑)
⁻ Lower the cost of computing (1.8×↓)

Every 2 Years

Presenter
Presentation Notes
But, somebody needs to make those transistors available to the rest of the community.
All of this sounds nice and dandy, but what is the catch?




Semiconductor trends

ITRS roadmap for SoC Design Complexity Trens

Expected number of processing elements into a System-on-Chip (SoC).

ITRS: International Technology Roadmap for Semiconductors
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Semiconductor trends

ITRS roadmap for SoC Design Complexity Trens

5



Semiconductor trends

Network-on-Chip (NoC) –based Multi/Many-core Systems

Founder: Andreas Olofsson
Sponsored by Ericsson AB
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Dark Silicon Era
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The catch is powering exponentially 
increasing number of transistors 
without melting the chip down.

If you cannot power them, why 
bother making them?
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Then talk about shift to multicore
The catch is powering exponentially increasing number of transistors without melting the chip down.
As this graph shows even thought we have been doubling the number of transistors every year, but we have been increasing the chip power consumption much slower and actually we have already hit the chip power budget limits.
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Dark Silicon
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The catch is powering exponentially increasing number of transistors without melting the chip down.
As this graph shows even thought we have been doubling the number of transistors every year, but we have been increasing the chip power consumption much slower and actually we have already hit the chip power budget limits.





Evaluation of processors
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The general consensus was that with exploiting parallelism in the applications and increasing the number of cores we can overcome the transistor scaling trends!
We will be able to continue scaling many more generations!

There was diminishing return but if the power but we didn’t have the power to spend 

We have shown how:
With a small cores but many of them you can exploit task level parallelism!
There is enormous value in improving the performance of single cores and in performance of multicore
Our community has largely moved to multicore a larger fration of the community outgh to be investigating other paths

Right now an enormous fraction of the researh community is invested in multicore research




Even multicores could not help!

[Esmaeilzadeh, Blem, St. Amant, Sankaralingam, Burger, ISCA 2011]
10



End to Moore’s law?

Source: Shekhar Borkar, Intel Corporation 

Multicores are likely to be a stopgap
 Not likely to continue the historical trends
 Do not overcome the transistor scaling trends
 The performance gap is significantly large
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Talk about economics
Digital tax – need to take noisy, small number of atoms and electrons, and build reliable and stable Boolean logic

Not the end of progress, just the end of consistent, predicable exponential growths in transistor counts
During this time DRAM will die, but non-volatile memory densities will continue to make great progress, as well as communications.
Expect to see different technologies with different characteristics integrated into dies.




End to Moore’s law?

Source: Shekhar Borkar, Intel Corporation 

• HW/SW specialization and heterogeneity
• Approximate computing
• New emerging technologies (under development)
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Not the end of progress, just the end of consistent, predicable exponential growths in transistor counts
During this time DRAM will die, but non-volatile memory densities will continue to make great progress, as well as communications.
Expect to see different technologies with different characteristics integrated into dies.




Where we are now and what’s the trend?

ITRS roadmap for SoC Portable Design Complexity Trens

SoC Architecture Template.
The SOC embodies a highly parallel architecture 
consisting of 
• Main processors (grow slowly)
• PEs (Processing Engines) (grow faster)
 customized processor 
 Accelerators (function). 

• Peripherals
• Memories (proportional to #PEs)
• Die size of 49mm2 gradually decreases to 44mm2

This architecture template enables both high
processing performance and low power
consumption by virtue of parallel processing
and hardware realization of specific functions.

ITRS: International Technology Roadmap for Semiconductors
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Example:
OMAP (Open Multimedia Applications Platform)
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The previous graph is useful for understanding the disparity of efficiency on existing chips.
But let’s understand the space of possibilities and the rough magnitudes of opportunity.
Go through animation
Code specialization is well underway, with great work at Berkeley and many other places tackling the parallelization challenge.
GPUs are specialized logic for SIMD-izable workloads which require code specialization as well

First let’s look at how we might make logic specialization more general




Paradigm Shift from 
Homogeneity to Heterogeneity

Heterogenous (Zynq/HSA-like) HW/SW SoC platform
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Heterogeneous Computing 

Transforming von Neumann to heterogeneity
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Find critical part of 
program component

Compile the program 
& specilized SW/HW

Execute on a fast specialized 
processing engine (PE)
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Approximate computing

• Relax the abstraction of near-perfect accuracy in general-purpose computing
• Allow errors to happen in the computation

 Run faster
 Power efficient 

• This sounds a bit crazy but a large body of important applications having some
amount of errors in the computation, entirely acceptable!

 Computer vision, multimedia, stream applications
 Large-scale machine learning
 Bioinformatics
 Mining big data
 Speech and AI
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Approximate computing (cont.)

Embracing error: 
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Approximate computing (cont.)

Embracing error: 

EnergyErrors EnergyErrors

EnergyErrors EnergyErrors

0% 100% 2% 60%

20% 45% 70% 20%
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Approximate computing (cont.)

Transforming von Neumann to Neural Networks

Speed:    ~4×↑,
Energy:  ~10×↓,
Quality:  5%↓)

[Esmaeilzadeh, and Burger, MICRO 2012]
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Approximate computing (cont.)

Zynq/HSA-like HW/SW SoC platform
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Neuromorphic Application
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Why Deep Learning (Neuromorphic)?

Intel: Nervana and Movidius
Google: Tensor
Nvidia: Jetson TX1 and TX2 specialized for DNN
Microsoft: BrainWave
Qualcomm: Zeroth Processors, extending with NVM
IBM: TrueNorth
Auviz/Xilinx: CNN accelarator

# of papers

# of citationsNeuromorphic computing scales well 
increasing complexity of problems.

Biological and silicon neurons have much better power and 
space efficiencies than digital computers [MIT & Intel]
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Security
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Computing Platform 

Potential applications:

Bionix

WSN/IoT/Wearables

Autonomous 
UAV/vehicle/robot 

ADCADCADC
Preprocessing

(Filtering & 
Segmentation)

Mainprocessing 
(Feature extraction & 

Classification)

Postprocessing 
(Compression & 

Encryption)

Communication 
(TX/RX)

DSP + Memory

Wearable System
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• Vision Camera:
– Cameras are the only sensor technology that can capture texture, color and contrast 

information and the high level of detail captured by cameras allow them to be the 
leading technology for classification. 

• make camera sensors indispensable for autonomous systems.

– The camera sensor technology play a very large role in autonomous vehicle. 

Some examples of camera in the Advanced driver-
assistance systems (ADAS) application:

• Adaptive Cruise Control (ACC)
• Automatic High Beam Control (AHBC)
• Traffic Sign Recognition (TSR)
• Lane Keep Systems (LKS)

U.S. collision avoidance sensors market, 
by technology, 2014 - 2025 (USD Million)

Camera will becomes 
domnant 

Autonomous vehicles & Technology Used
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Heterogenous embedded platform:

• We need high-performance embedded computing machines to deal with huge amount 
of heterogeneous sensor inputs while executing multiple algorithms for autonomy!

• Examples: 
Perception:
– 3-D imaging with multiple lasers (LIDAR).
– Edge-Detection Algorithm
– Motion-Detection algorithm
– Tracking algorithm

• (parallel) Heterogenenous Computing

• Deep Learning

* Real-time data will grow at 1.5 times the rate of 
overall data creationHeterogeneous Era 
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Find a critical
program component

Compile the program 
& generate HW logics Execute on the HW logic

Code generation 
from modeling

- HW&SW Integration
- Based on legacy code
- Map the legacy code to heterogeneous architgectures 

Heterogeneous Era (cont.)
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Find a critical
program component

Code generation 
from modeling

Heterogeneous Era (cont.)

Compile the program 
, generate & train a NN

Execute on the smart and 
faster logic

- HW&SW Integration
- Based on legacy code
- Generting and optimizing deep neural nerwork

27



Heterogeneous Era (cont.)

c = filter (a);

Source code

Code generator
DNN_send (a);

Instrumented 
CPU binary

DNN_rec (&c);

DNN Builder
via multi-objective optimization 

(accuracy, energy, etc.)

Frontend Layer

Training Sets 
Library

System 
constraints

Hand-optimized 
HW&SW Templates

Hardware 
constraints

Backend Layer

Mapping

Multi-core CPU

FPGA

Heterogeneous System

GPU

DeepMaker: Deep Learning Accelerator on Commercial Programmable Devices
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(a) DeNNA Architecture(b) Cluster Micro-Architecture

(c) Core Micro-ArchitectureDeep Neural Network Accelerators (DeNNA):
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DeepMaker

• Mohammad will continue with some of the latest 
results
• How we generate optimal models for deep networks
• Some results for image processing with industrial 

dataset
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DeepMaker Framework

Mohammad Loni, Masoud Daneshtalab
{mohammad.loni, masoud.daneshtalab}@mdh.se

School of Innovation, Design and Engineering
Mälardalen University, Sweden

12 Dec. 2018, Västerås



● Convolutional Neural Networks (CNNs)
● Processing Challenges of CNNs
● DeepMaker Framework
● Classification/Implementation Results
● Conclusion
● References

Agenda
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● CNN is composed of multiple layers running in sequence, where input data is 
fed to the first layer and output is a series of feature extraction kernels 
applied on the input image. 

● Convolution, normalization, pooling, and activation layers are responsible 
for feature extraction, while fully-connected layers are for classification.

CNN
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1. Dealing with big amount of raw data for modern applications
● Modern Vision Camera: 10 Megapixel, 40 frame/sec.
● By 2025, real-time data (generated by IoT) will constitute nearly 30% of all 

data created.

Processing Challenges

Annual Size of the Global Datasphere [1] Data Creation by Type [1]
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1. .

2. Traditional CMOS scaling no longer provides performance and efficiency gains 
due to the failure of Dennard scaling and Moore’s law [3].

3. Increasing the complexity of DL algorithms for achieving better accuracy [4]. 

Processing Challenges in 
Big Data Era (cont.)

* The classification results of 
the ImageNet challenge [5]

5
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So we need a huge amount of processing ptontial to deal with bit data and increasing complexity of algorithms.




● We aim to tackle these challenges by providing a framework which generates 
synthesizable accelerators for CNNs 

● Front-end: is responsible for Designing an accurate and optimized
CNN architecture 
● The network  generalization proficiency, network complexity, and execution 

time are depending on network architecture. 
● Back-end: Efficient Implementation of generated CNN on different COTS 

processing platforms

DeepMaker [4]
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Designing a Optimal CNN 
Architecture

• Using a metaheuristic evolutionary solution for efficiently exploring the 
design space of CNN architectures

• Leveraging a multi-objective exploration strategy 
• Validation Accuracy
• Network Architectural Complexity:       Total number of trainable parameters

● Output: a set of Pareto frontiers including improved architectures

7
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Presentation Notes
The ﬁxed length genome type is pictured in Fig. 4.(a) with three columns and two rows, where the number of processing nodes could be different from genome length. In this representation, we have two different nodes, active and inactive, where active node should be in the chain, from input to the output.

In this representation, we have two different nodes, active and inactive, where active node should be in the chain, from input to the output




Selection Policy

• Representing the CNN architecture as a genome type

• Pruning the design space by taking inspirations from DenseNet arch.

The template architecture of generated networks
8
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We used one point crossover and mutation on one single parameter
Table shows the range of each parameter



● Training Datasets
● MNIST: This is a dataset of black and white images for handwritten digit recognition
● CIFAR-10: This is a complex colorful benchmark dataset of natural images used for 

object recognition 

● Getting the total execution time as the evaluation metric since 
communication time is vital for embedded implementations

● We also did not use any network compression technique to only assess the 
influence of network architecture on inference time.

● Initial Configuration: 
● Epoch=30, batch size=128, number of generations=5, initial population=2.

● Back-end side:

Results

CPU Core i7-7820

GPU Tesla M60

ARM Cortex-A15

FPGA Xilinx UltraScale+ 9



Classification Results
• MNIST (Compare to MetaQNN by Google): 43x compression rate, 0.06% accuracy loss
• CIFAR-10 (Compare to the most accurate): 26.4x compression Rate, 4% accuracy loss
• CIFAR-10 (Compare to MetaQNN by Google): 6.92x compression Rate, 4.2% better  

accuracy

Google

Most Popular                                                                                                                 1.7x compression rate, 0.5% accuracy loss                                                                                                                

Google (RL)                                                                                                      5.4x compression rate, 1.5% accuracy loss 
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• All the results have been compared with DenseNet (7 M params) as the most 
accurate network 

● FPGA execution time

Generated
Network

Speedup Accuracy 
Loss (%)

Net-CNN-
Arch.1

5.2x 1.13

Net-CNN-
Arch.2

10x 2.93

Net-CNN-
Arch.3

39.63x 8.33

Implementation Results
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Implementation Results on GPU and ARM

● GPU

Generated
Network

Speedup Accuracy Loss
(%)

Net-CNN-Arch.1 6.55x 1.13

Net-CNN-Arch.2 11x 2.93
Net-CNN-Arch.3 23.8x 8.33

Generated
Network

Speedup Accuracy Loss 
(%)

Net-CNN-Arch.1 4x 1.13

Net-CNN-Arch.2 6.27x 2.93
Net-CNN-Arch.3 13.25x 8.33

● ARM Processor

12
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We select DenseNet (K=12)-100  as the baseline for comparisons since this architecture has strikes a balance between accuracy and the number of parameters
Unlike accuracy and the number of parameters, execution time is a platform aware metric and highly depends on hardware implementation, compiler, and the software stack. Therefore, there is no exact speedup similarity among different hardware platforms



● All the results have been achieved by running on NVIDIA GTX 1080ti.

● 4x better inference time (total execution time)

● 4.22x more energy efficiency

● 4.15 % more accurate results

Results

Solution Facebook, 
2018 [2]

DeepMaker

AVG. Accuracy 86.95 % 91.1%

Inference Time (ms) 63 16

Frame/Second 15 62
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● Deep convolutional neural networks are complex processing models 
which their implementation is challenging especially on embedded 
devices

● To tackle these challenges, we proposed a multi-objective 
evolutionary approach which automatically design a highly 
optimized CNN arc. for COTS processing platforms.

● The evaluation results demonstrate the effectiveness of DeepMaker 
on complex image datasets

Conclusion
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Thank you!
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