

AI I PROCESS-INDUSTRIN

För ett hållbart och konkurrenskraftigt Sverige Stig Larsson

RISE Research Institutes of Sweden

ICT SICS Västerås

Vinnovas satsning "Den smarta digitala fabriken"

E-DIG Digital lärplattform

Digitalt kvalitetscertifikat vid 3d-printing Kommunikation och underhåll i den

Maskininlärning genom automatisk analys av stora datamängder

Flexibel robotisering för små- och medelstora produktionsföretag

Det smarta digitala sågverket

digitala fabriken

3d-printing av verktyg

DIGFOG Digitaliserade fogningsprocesser

Fakta om RISE-koncernen

- Finns över hela Sverige och lite till.
- 2 300 medarbetare, varav 30 % disputerade forskare. +355 nya medarbetare från Swerea från den 1 oktober.
- Omsatte 2017 cirka 2,7 miljarder SEK.
- En stor del av kunderna är små- och medelstora företag som står för ca 30 procent av omsättningen.
- Driver ett 100-tal test- och demonstrationsmiljöer, öppna för företag och lärosäten (Ägare och partner i 60 % av Sveriges samlade test- och demonstrationsmiljöer).

Med vår kompetensbredd och unika expertis skapar vi nytta för många

Artificiell intelligens, Al

- Varför intressant just nu?
 - Processorkraft
 - Minne
 - Algoritmer

Text från olika källor

Domain-agnostic discovery of similarities and concepts at scale, Olof Görnerup, Daniel Gillblad, Theodore Vasiloudis, Knowledge and Information Systems, Sep 2016

Teckenspråkstolkning – hand och kropp

- Vad behövs för att bygga automatisk översättning från teckenspråk till tal/text?
- En utmaning: svåra bildförhållanden

Påverkar alla områden och branscher

Al idag: fokus på datadrivna tillämpningar

Hjärtat som driver det datadrivna: maskininlärning

Vad lär man sig från?

- Alla slags data
- Tidsserier
- Naturligt språk / text
- Bilder, video, ljud

Vad lära sig?

- Klassificering
- Klustring
- Prediktion
- Avvikelsedetektion

Vad används det till?

- Rekommendationssystem
- Upptäcka bedrägerier
- Medicinsk diagnos
- Upptäcka fel i utrustning
- Ansiktsigenkänning
- Taligenkänning
- Översättning
- ...

BIG DATA = BIG VALUE ?

RÄTT DATA + en hel del arbete = BIG VALUE

Maskininlärning

Exempel på tillämpningar

Processoptimering/prognos

Vilka parameterinställningar ger bäst kvalitét och minst produktionsavbrott?

Upptäcka det onormala

• Är detta ett normalt beteende eller avviker det mycket från det förväntade?

Upptäcka felaktigheter

Kommer denna process leda till produktionsavbrott eller ett känt fel på maskinen?

Maskininlärning Exempel

Underhåll och optimering av maskiner och processer

Underhåll och optimering av maskiner och processer

Underhåll

- Avhjälpande underhåll
- Förebyggande underhål
 - Schemalagt underhåll
 - Tillståndsbaserat underhåll
 - Prediktivt underhåll

Resultat från forsknings*

- "Datadrivet underhåll sparar pengar för industrin"
- "...spara 20-40 procent av kostnaderna för underhåll."

^{*}http://www.forskning.se/2016/11/30/datadrivet-underhall-sparar-pengar-for-industrin/

Vilken blomma är det? https://en.wikipedia.org/wiki/Iris_flower_data_set#Data_set

	I	1			1
41	5.0	3.5	1.3	0.3	I. setosa
42	4.5	2.3	1.3	0.3	I. setosa
43	4.4	3.2	1.3	0.2	I. setosa
44	5.0	3.5	1.6	0.6	I. setosa
45	5.1	3.8	1.9	0.4	I. setosa
46	4.8	3.0	1.4	0.3	I. setosa
47	5.1	3.8	1.6	0.2	I. setosa
48	4.6	3.2	1.4	0.2	I. setosa
49	5.3	3.7	1.5	0.2	I. setosa
50	5.0	3.3	1.4	0.2	I. setosa
51	7.0	3.2	4.7	1.4	I. versicolor
52	6.4	3.2	4.5	1.5	I. versicolor
53	6.9	3.1	4.9	1.5	I. versicolor
54	5.5	2.3	4.0	1.3	I. versicolor
55	6.5	2.8	4.6	1.5	I. versicolor
56	5.7	2.8	4.5	1.3	I. versicolor
57	6.3	3.3	4.7	1.6	I. versicolor
58	4.9	2.4	3.3	1.0	I. versicolor
59	6.6	2.9	4.6	1.3	I. versicolor

Samband mellan egenskaper och etikett

Egenskaper Etikett
$$F(x) = y$$

- Arbestgång, itereras:
 - Välj egenskaper
 - Välj metod och modell
 - Träna modellen
 - Testa modellen
- Utmaningar:
 - Välj rätt egenskaper
 - Välj rätt metod för att bestämma F

Att välja metod

https://scikit-learn.org/stable/user_guide.html

1. Supervised learning

- ▶ 1.1. Generalized Linear Models
- ▶ 1.2. Linear and Quadratic Discriminant Analysis
- 1.3. Kernel ridge regression
- ▶ 1.4. Support Vector Machines
- ▶ 1.5. Stochastic Gradient Descent
- ▶ 1.6. Nearest Neighbors
- ▶ 1.7. Gaussian Processes
- 1.8. Cross decomposition
- ▶ 1.9. Naive Bayes
- ▶ 1.10. Decision Trees
- ▶ 1.11. Ensemble methods
- ▶ 1.12. Multiclass and multilabel algorithms
- ▶ 1.13. Feature selection
- ▶ 1.14. Semi-Supervised
- 1.15. Isotonic regression
- 1.16. Probability calibration
- ► 1.17. Neural network models (supervised)

2. Unsupervised learning

- ▶ 2.1. Gaussian mixture models
- ▶ 2.2. Manifold learning
- ▶ 2.3. Clustering
- ▶ 2.4. Biclustering
- ▶ 2.5. Decomposing signals in components (matrix factorization problems)
- ▶ 2.6. Covariance estimation
- ▶ 2.7. Novelty and Outlier Detection
- ▶ 2.8. Density Estimation
- ▶ 2.9. Neural network models (unsupervised)

Klassificering

Regression

Regression

Data från processindustri

Avvikelsedetektion

Visualisering av alarm

EXEMPEL FRÅN STÅLINDUSTRIN

RISE Research Institutes of Sweden

CASE 1

Undersökning av orsak till haveri

Data

Underhåll, stopp eller haveri?

Varians

Identifierad anomali

Avvikande trend för vals 5, variansen för ett referensvärde

Orsak till större varians för vals 5

Avvikelse för medelvärden för skevhet mellan olika sidor för vals 4

Data för nytt haveri

Behövs mer data bakåt i tiden

Nya data, varians

Inga slutsatser baserat på tillgängligt data

Utmaningar

- I denna fallstudie:
 - Metadata saknas
 - PLC-data?
 - Lagring av data
 - Förstå data och processen
- Generellt:
 - Vilka data är tillgänglig?
 - Hur är data från olika system kopplade?
 - Långsiktig användning

CASE 2

• Effektivare underhåll värmeväxlare

Underhåll VVX

 Effektivisera tvätt av filter i värmeväxlare genom att prediktera behov av tvätt

Mätningar VVX1

Vvx1: difftryck_ÄV/[temp_p_in-temp_av_in]

10 dagar vvx1

Korrelation mätvärde under längre period

Sammanfattning dataanalys

- Resultat
 - Inga konkreta analysresultat
 - Bra underlag för visualisering av analys
- Framgångsfaktorer för dataanalys
 - Förståelse för process och problembild
 - Gemensam analysgrupp med olika kompetenser och experter
 - Öppet klimat
 - Fungerande datainsamling
 - Rätt urval av data kräver initial och kontinuerlig diskussion om process och problem
 - System för att lätt komma åt data
 - Rätt typ av data
 - Data måste innehålla anomalier för att möjliggöra lärandet
 - Stora mängder data under längre perioder

KONTAKTUPPGIFTER

Stig Larsson

stig.larsson@ri.se

072 563 7876

RISE Research Institutes of Sweden

ICT SICS Västerås

