R10

Al I PROCESSINDUSTRIN

För ett hållbart och konkurrenskraftigt Sverige Stig Larsson

RISE Research Institutes of Sweden
ICT
SICS Västerås

Vinnovas satsning "Den smarta digitala fabriken"

E-DIG Digital lärplattform
Det smarta digitala sågverket

Digitalt kvalitetscertifikat vid 3d-printing Kommunikation och underhåll i den digitala fabriken

Maskininlärning genom automatisk analys av stora datamängder

Flexibel robotisering för små- och medelstora produktionsföretag

3 d-printing av verktyg

DIGFOG Digitaliserade
fogningsprocesser

Fakta om RISE-koncernen

- Finns över hela Sverige - och lite till.
- 2300 medarbetare, varav 30 \% disputerade forskare. +355 nya medarbetare från Swerea från den 1 oktober.
- Omsatte 2017 cirka 2,7 miljarder SEK.
- En stor del av kunderna är små- och medelstora företag som står för ca 30 procent av omsättningen.
- Driver ett 100-tal test- och demonstrationsmiljöer, öppna för företag och lärosäten (Ägare och partner i 60% av Sveriges samlade test- och demonstrationsmiljöer).

Med vår kompetensbredd och unika expertis skapar vi nytta för många

Artificiell intelligens, AI

Text från olika källor

Domain-agnostic discovery of similarities and concepts at scale, Olof Görnerup, Daniel Gillblad, Theodore Vasiloudis, Knowledge and Information Systems, Sep 2016

Teckenspråkstolkning - hand och kropp

- Vad behövs för att bygga automatisk översättning från teckenspråk till tal/text?
- En utmaning: svåra bildförhållanden

Påverkar alla områden och branscher

Skatteverket

$\stackrel{R}{S E}$

Al idag:

 fokus på datadrivna tillämpningar

RI
SE

Hjärtat som driver det datadrivna: maskininlärning

Vad lär man sig från? Vad används det till?

- Alla slags data
- Rekommendationssystem
- Tidsserier
- Naturligt språk / text
- Upptäcka bedrägerier
- Bilder, video, ljud

Vad lära sig?

- Klassificering
- Klustring
- Prediktion
- Avvikelsedetektion

BIG DATA = BIG VALUE ?

RÄTT DATA + en hel del arbete = BIG VALUE

Maskininlärning

Exempel på tillämpningar

- Processoptimering/prognos
- Vilka parameterinställningar ger bäst kvalitét och minst produktionsavbrott?
- Upptäcka det onormala
- Är detta ett normalt beteende eller avviker det mycket från det förväntade?
- Upptäcka felaktigheter
- Kommer denna process leda till produktionsavbrott eller ett känt fel på maskinen?

Maskininlärning Exempel

Underhåll och optimering av maskiner och processer

Underhåll och optimering av maskiner och processer

Underhåll

Fel: X

- Avhjälpande underhåll
- Förebyggande underhål

Resultat från forsknings*

""Datadrivet underhåll sparar pengar för industrin"
 -"...spara 20-40 procent av kostnaderna för underhåll."

*http://www.forskning.se/2016/11/30/datadrivet-underhall-sparar-pengar-for-industrin/

Vilken blomma är det?

41	5.0	3.5	1.3	0.3	I. setosa
42	4.5	2.3	1.3	0.3	I. setosa
43	4.4	3.2	1.3	0.2	I. setosa
44	5.0	3.5	1.6	0.6	I. setosa
45	5.1	3.8	1.9	0.4	I. setosa
46	4.8	3.0	1.4	0.3	I. setosa
47	5.1	3.8	1.6	0.2	I. setosa
48	4.6	3.2	1.4	0.2	I. setosa
49	5.3	3.7	1.5	0.2	I. setosa
50	5.0	3.3	1.4	0.2	I. setosa
51	7.0	3.2	4.7	1.4	I. versicolor
52	6.4	3.2	4.5	1.5	I. versicolor
53	6.9	3.1	4.9	1.5	I. versicolor
54	5.5	2.3	4.0	1.3	I. versicolor
55	6.5	2.8	4.6	1.5	I. versicolor
56	5.7	2.8	4.5	1.3	I. versicolor
57	6.3	3.3	4.7	1.6	I. versicolor
58	4.9	2.4	3.3	1.0	I. versicolor
59	6.6	2.9	4.6	1.3	I. versicolor

Samband mellan egenskaper och etikett

Egenskaper
 F(x) $=$
 Etikett
 $=\mathrm{y}$

- Arbestgång, itereras:
- Välj egenskaper
- Välj metod och modell
- Träna modellen
- Testa modellen
- Utmaningar:
- Välj rätt egenskaper
- Välj rätt metod för att bestämma F

Att välja metod

- https://scikit-learn.org/stable/user_guide.html

1. Supervised learning

-1.1. Generalized Linear Models

- 1.2. Linear and Quadratic Discriminant Analysis
1.3. Kernel ridge regression
- 1.4. Support Vector Machines
- 1.5. Stochastic Gradient Descent
- 1.6. Nearest Neighbors
- 1.7. Gaussian Processes
1.8. Cross decomposition
- 1.9. Naive Bayes
- 1.10. Decision Trees
- 1.11. Ensemble methods
- 1.12. Multiclass and multilabel algorithms
- 1.13. Feature selection
- 1.14. Semi-Supervised
1.15. Isotonic regression
1.16. Probability calibration
- 1.17. Neural network models (supervised)

2. Unsupervised learning

- 2.1. Gaussian mixture models
- 2.2. Manifold learning
- 2.3. Clustering
- 2.4. Biclustering
- 2.5. Decomposing signals in components (matrix factorization problems)
- 2.6. Covariance estimation
- 2.7. Novelty and Outlier Detection
- 2.8. Density Estimation
- 2.9. Neural network models (unsupervised)

Klassificering

Regression

Regression

Data från processindustri

Avvikelsedetektion

$*$

Visualisering av alarm

RI
SE

R10

EXEMPEL FRÅN STÅLINDUSTRIN

CASE 1

- Undersökning av orsak till haveri

Data

	Clipboard		External data		Resources	Insent	Relationships Calculations	ns Share						
風	$\times \vee$													Fields
	Rowr	TimeOFifisisample	rimevector	P4. Valstraft [f	P4. Valskraft DS	P4_K.apselpos._92_m_Is	P4.K.apsepos._S2_m_s			P4. Kapselpos.sp1_m_ os	P4. Kapselpos. 582 lm mos	P4. Mapsepos._92_Ut Dis	P4._Mapselpos.32.ut.	
\#	107234	01/11/2016 03:31:50	13.3511	6314.464	6234.1005	4.2558	4.3164	3.1344	2.9829	4.2453	3.5499	4.3792		ρ search
	107234	01/11/2016 03:31:50	23.1519	5974.4544	6185.5861	4.2903	4.3402	3.1952	3.0424	4.3152	3.6575	4.4862		
	107234	01/11/201603:31:50	24.0769	5877.3088	6088.5573	${ }_{4} .3363$	4.375	3.1952	3.0543	4.3502	3.6814	${ }^{4.4981}$		
	107234	01/11/2016 03:31:50	25.077	6023.0272	6234.1005	4.2788	4.2927	3.1466	3.0305	4.3036	3.6336	4.4506		- 201703131084106
	10724	01/11/2016 03:31:50	25.7771	5974.4544	6234.1005	4.3018	4.3402	${ }^{3.1587}$	3.0186	4.3036	3.6456	4.4625		
	10723	01/11/2016 03:31:50	26.6521	5998.7408	6161.3289	4.3018	4.3521	3.1709	3.0186	4.3152	3.6575	4.4862		$\Sigma \text { HyAGC_Pys }$
	10723	01/11/2016 03:31:50	30.4024	5634.4488	58217281	${ }^{4.467}$	4.4946	3.2926	${ }^{3} 1138$	4.4202	3.777	4.5933		£ P4,Kapselpos.Sylㄴ..
	107234	01/11/2016 03:31:50	${ }^{33.1777}$	5804.4996	5967.2713	4.3593	4.4114	3.2439	3.1019	4.3619	3.7173	4.5576		Σ P4,Kapselpos_Sylㄴ..
	10723	01/11/2016 03:31:50	${ }^{33.3777}$	5877.3088	6015.7857	4.3478	4.3758	3.2196	3.09	4.3386	${ }^{3.7053}$	4.5338		इ. P4, K.apselpos Syl U
	107234	01/11/2016 03:31:50	33.6777	5804.4996	6015.7857	4.3593	4.4114	3.2439	3.09	4.3852	3.7292	4.5457		E P4, Kapselos Syl_U
	10723	01/11/201603:31:50	${ }^{34.2527}$	6023.0272	620988433	4.2788	4.3164	3.1709	3.0424	4.2919	3.6456	4.4862		Σ P4, Kapselpos Syy
	107234	01/11/2016 03:31:50	37.28	5707.304	5845.9853	4.4052	4.4827	3.2561	3.09	4.3969	3.7651	4.5814		$\Sigma \mathrm{P} 4$ Kapselpos S. $\mathrm{S}_{2} \mathrm{~L} \mathrm{~L}$
	10723	01/11/2016 03:31:50	37.928	5828.736	5943.0141	4.3822	4.4352	3.2439	3.0781	43852	3.7292	4.5576		£ P4, Kapselpos Sy2 U U
	107234	01/11/2016 03:31:50	39.1531	5634.4448	5748.9565	4.4397	45183	3.3169	3.1138	4.4552	3.801	4.617		£ P4.K.Kpselpos Sy2.U...
	107234	01/11/2016 03:31:50	39.8032	5683.0176	5797.4709	4.4167	4.4708	3.2804	3.1257	4.4085	3.77	4.6052		£ P4. Sevoret Kapsel...]
	107234	01/11/2016 03:31:50	39.8282	5683.0176	5773.2137	${ }^{4.4167}$	4.4708	3.2804	3.1257	4.4085	3.777	4.6052		$\Sigma \mathrm{P} 4$ Servoret Kapsel_...
	10723	01/11/201603:31:50	40.9783	5655.7312	5797.4709	${ }^{4.4167}$	4.4708	3.2804	3.1257	4.4085	3.77	4.6052		$\Sigma \mathrm{P}$ P Sevoret Kapsel_...
	10723	01/11/201603:31:50	42.0534	5585.872	5748.9565	4.4512	4.5183	3.3047	3.1376	4.4435	3.801	4.6289		
	10723	01/11/2016 03:31:50	42.8784	5707.304	5870.2425	4.3707	4.4471	3.2804	3.1138	4.3852	3.7531	4.5933		Σ P4.Tyck.Kapsel DS
	107234	01/11/2016 03:31:50	43.4035	5707.304	5845.9853	${ }^{4.3822}$	4.4471	${ }^{3} 28804$	3.1138	4.3969	3.7531	${ }^{4.5933}$		Σ P4_Lyck_Kapsel_IS
	107234	01/1/2016 03:31:50	43.7785	5804.4496	5918.7569	${ }^{4.3822}$	${ }^{4.4233}$	${ }^{3.2561}$	3.1138	4.3969	3.7412	4.5695		Σ P4_Tyck_K.Kapsel RS
	107234	01/11/2016 03:31:50	43.8535	5804.4996	5918.7569	${ }^{4.3822}$	4.4352	3.2804	3.1138	4.3969	3.7531	4.5814		EPA_Valskrat_ DS
	107234	01/11/2016 03:31:50	48.7789 50891	5658.7312 5888736	5821.781 59672713	4.4667 4593	4.4827 4996	$\begin{array}{r}3.2804 \\ \hline\end{array}$	3.1138 3019	4.4885	3.777	${ }_{4}^{4.6552}$		Σ P4._Valskrat_ FS
	107234	01/11/2016 03:31:50	50.8041 517541	5828.736 57801632	5967.2713 5918759	4.3593 43707	${ }_{4}^{4.9996}$	3.2561 32682	3.1019 3.1019	4.3619 43852	$\begin{array}{r}3.7292 \\ \hline\end{array}$	4.5695 45814		E P5.K.apselos SylıL...
	107234	01/11/2016 03:31:50	51.7541 525292	5780.1632 57315904	5918.7569 58702425	4.3707 48822	${ }_{4}^{4.4352}$	3.2682 .3561	3.1019 31019	${ }_{4}^{4.3852}$	3.7412	4.5814		Σ P5 Kapselpos Sy 1.1
	107234	01/11/2016 03:31:50	52.5292 528292	5731.5904 57801632	5870.2425 59430141	4.3822 4.3593	${ }_{4}^{4.4352}$	3.2561 3.2682	3.1019 3.1019	${ }_{4}^{4.3695}$	3.7412 37412	${ }_{4}^{4.5576}$		Σ P5_Kapselpos_Syl_u.
	107234	${ }^{01 / 11 / 201603: 31-50}$	528282 596043	5780.1632 5828736	${ }_{5}^{5943014141}$	${ }_{4}^{4.3593}$	${ }_{4}^{438377}$	3.2682 3.3317	3.1019 3.1019	${ }_{4}^{43852}$	3.7412 37173	${ }_{4}^{4.56957}$		Σ P5 Kapselpos Syl
	107234 10724	${ }^{01 / 11 / 20160303: 3150}$	53.6043 54.1543	5828.736 5950.168	${ }_{5991.5285} 611845$	${ }_{4}^{4.3593}$	${ }_{4}^{4.3877}$	3.2317 3.1952	3.1019 3.0543	${ }_{4}^{4.3736}$	3.7173 3.6814	4.5457		
	107234	01/11/2016 03:31:50	58.3547	5755.8768	5894.4997	4.3707	4.4471	3.2561	3.0781	4.3852	${ }^{3} .7412$	4.5576		Σ P5,Kapselpos Sy 2 L
	107234	01/11/2016 03:31:50	62.53	5877.3088	59672713	4.3822	4.4352	3.2439	3.0781	4.3852	3.7292	4.5576		
	107234	01/11/2016 03:31:50	64.1051	5998.7408	6161.3289	4.3018	${ }_{4} .3521$	3.1952	3.0543	4.3036	3.6695	4.4981		Σ P5 K.Kpselpos Sy_
	107234	01/11/2016 03:31:50	66.8553	5731.5004	5821.7881	4.4052	${ }^{4.4827}$	3.2561	3.0781	4.3969	3.7651	4.5814		Σ P5 Sevoref_Kapsel....
	107234	01/11/2016 03:31:50	76.6811	5731.5904	5870.2425	4.3822	4.4589	3.2804	3.1019	4.3969	3.7531	4.5933		E P5 Sevoret Kapsel....
	107235	01/11/201603:33:57	16.3513	5655.7312	5506.3845	5.9569	6.0264	4.9472	4.7319	5.9946	5.3549	6.2342		£ P5 Sevoret Kapsel_...

Underhåll, stopp eller haveri?

$\stackrel{R 1}{\text { RI }}$

Varians

Identifierad anomali

Avvikande trend för vals 5, variansen för ett referensvärde

Orsak till större varians för vals 5

\qquad $>$

Avvikelse för medelvärden för skevhet mellan olika sidor för

 vals 4

Data för nytt haveri

Behövs mer data bakåt i tiden

Nya data, varians

```
-P4_Servoref_Kapsel_Sy1_DS Pp5_Servoref_Kapsel_Sy1_DS
```


P5_Servoref_Kapsel_Sy1_DS by TimeOffirstSample

Inga slutsatser
baserat på
tillgängligt data

Utmaningar

- I denna fallstudie:
- Metadata saknas
- PLC-data?
- Lagring av data
- Förstå data och processen
- Generellt:
- Vilka data är tillgänglig?
- Hur är data från olika system kopplade?
- Långsiktig användning

CASE 2

- Effektivare underhåll värmeväxlare

Underhåll VVX

Mätningar VVX1

楽

Vvx1: difftryck_ÄV/[temp_p_in-temp_av_in]

10 dagar vvx1

WTP 3021 BTI155 VVX1 ĀVIN_TMP and WTP 3021 BTI35 WXX1 PVIN TEMP
-WTP_30_21_BT1155_VVX1_ĀVIN_TMP -WTP_30_21_BT135_VXX1_PVIN_TEMP

Korrelation mätvärde under längre period

Sammanfattning dataanalys

- Resultat
- Inga konkreta analysresultat
- Bra underlag för visualisering av analys
- Framgångsfaktorer för dataanalys
- Förståelse för process och problembild
- Gemensam analysgrupp med olika kompetenser och experter
- Öppet klimat
- Fungerande datainsamling
- Rätt urval av data kräver initial och kontinuerlig diskussion om process och problem
- System för att lätt komma åt data
- Rätt typ av data
- Data måste innehålla anomalier för att möjliggöra lärandet
- Stora mängder data under längre perioder

R10

KONTAKTUPPGIFTER

Stig Larsson
stig.larsson@ri.se
0725637876

RISE Research Institutes of Sweden
ICT
SICS Västerås

