

Practical Control Applications

Abdel Rodriguez Abed, PhD

Artificial intelligence specialist

Addiva AB

abdel.rodriguez@addiva.se

Machine Learning

• Learning (Oxford): The acquisition of knowledge or skills through study, experience, or being taught.

 Learning (thelearningcoach.com): Relatively permanent change in a person's knowledge or behavior due to experience.

Machine Learning

• Supervised learning: recognition, detection, vision

Unsupervised learning: exploratory analysis

Semisupervised learning: control

Practical Applications

Reinforcement Learning

Wire Winding Machine

Wire Winding Machine

Left hand-side controller:

Results: Flat Flanges

Results: Bending Flanges

Tuning a PID For Controlling a Tractor

Results

Error

Autonomous Tractor

$$x_k = \begin{bmatrix} e_k \\ \dot{e}_k \\ R_t \end{bmatrix}$$

$$r_k = -\left(x_k^T Q x_k + u_k^T R u_k\right)$$

$$Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$R = [0]$$

Results

Error

Plus An Implement

Results

Conclusions

- Reinforcement Learning is a interesting building block for learning controllers:
 - Nice exploration strategies
 - Good performance in non-stationary environments
 - Good results in colaborative settings

 Deep Reinforcement Learning (Nature DQN) has been proven to beat humans while playing Atari Games